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Abstract-A numerical study of heat and mass transfer from cylindrical containers filled with nuclear 
waste and buried under the surface of the earth is reported here. For prescribed heat flux and leach rates 
the temperature and concentration distributions on the surface of the containers are determined under a 
variety of conditions. These conditions include the diffusion limit, the effect of superimposed flow, the 
multi-canister problem and radioactive decay of a parent-daughter chain. The equations governing 
unsteady transport are solved using a Galerkin finite element method. Results computed using this method 

are compared with those obtained from boundary-layer analysis. 

INTRODUCTION 

DISPOSAL of radioactive waste in cylindrical con- 
tainers under the surface of the earth has gained wide 
acceptance in the nuclear power industry. To carry 
out a safety analysis and gauge the impact of this 
practice on the environment it is necessary to deter- 
mine flow patterns and heat and mass transfer rates 
in the vicinity of these containers. The present work 
is a numerical study of this problem and a variety of 
controlling factors have been taken into account. The 
waste canisters are assumed to be buried in a water- 
saturated, homogeneous, isotropic porous medium. 
A canister would release thermal energy at its surface 
owing to the decay of radioactive waste contained 
within it. Mass transfer occurs at the surface of the 
canister due to leaching by the groundwater. The 
important questions to be answered are, (1) the 
maximum temperature and concentration levels 
attained in the flow domain and (2) the size of the 
region affected by the canister. Maximum temperature 
and concentration levels invariably occur on the surface 
of the canisters themselves. On the other hand safety 
analysis is usually performed over a long time period 
and the size of the affected region is large in com- 
parison to the canister diameter. Hence the two ques- 
tions given above address problems with length scales 
that differ by several orders of magnitude. 

The far field problem has been addressed quite 
extensively in the literature ; for example see Broyd 
[l], Huyakom et al. [2]. When the domain size under 
consideration is large it is important to include het- 
erogeneity and anisotropy of the porous formation 
and adsorption-desorption effects in heat and mass 
transfer. These effects are not significant in the near 
field problem and the assumption of a homogeneous 
and isotropic porous medium is adequate. However, 
the near-field solution must include the canister 
geometry, interaction effects between them, distortion 

to the flow path and appropriate boundary conditions 
for heat and mass transfer on the canister surface. 

Kimura [3,4] has numerically studied transient and 
steady state heat transfer from a canister burled in a 
porous medium under conditions of cross-flow and 
parallel flow. Kimura’s work assumes that the surface 
of the canister is at a uniform temperature. In the 
present study we assume that the heat flux is pre- 
scribed at the canister surface and the temperature 
level adjusts itself according to flow conditions pre- 
vailing in the porous region. We consider canisters 
and canister arrays under forced flow conditions in 
which variable density effects are ignored. The flow is 
assumed to occur normal to the axis of the cylinder. 
The equations governing heat and mass transfer in 
the presence of flow are solved using a Galerkin finite 
element method. The predictions of the numerical 
scheme are compared with those obtained from 
boundary-layer analysis of the heat and mass transfer 
problems. Both transient and steady state analyses 
have been included in the study. The emphasis in the 
present work is obtaining temperature and concen- 
tration levels on the canister surface when the heat 
and mass flux rates are prescribed subject to a variety 
of external factors. These factors are, the diffusion 
limit, inter-canister interaction due to proximity, 
effect of fluid flow, radioactivity decay and nuclide 
chain consisting of a parent and a daughter. 

Several important decay reactions that are relevant 
to near and deep surface burial of nuclear waste can 
be represented as a parent-daughter model. Here the 
parent has a finite half life and the daughter is long- 
lived or stable. Intermediate nuclides may be formed 
but are sufficiently short-lived to be ignored. The 
model that we consider for these reactions is A -+ B 
with decay constants ,l,, and 1,. Here 1, the decay 
constant (=0.693/half-life), is zero for a stable element. 

In solving a mass transfer problem for a parent and 
a daughter nuclide their respective transport prop- 
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NOMENCLATURE 

b decay parameter T temperature 
bA, b, decay parameter of nuclides A and B u velocity vector 
C concentration x, Y Cartesian coordinates. 

cA? cB concentration of nuclides A and B 
D dispersion coefficient Greek symbols 
J, Y Bessel functions of the first and second b parameter in Fourier transform, also 

kind retardation factor 
K local permeability 6 boundary-layer thickness 
N norm in equation (I 2) 0 angular coordinate 
Pe Peclet number 1 decay constant 
r radial coordinate Y stream function. 
R radius of canister 
RO eigenfunction in equation (I 2) Other symbols 

RP fraction of parent nuclide converted V gradient operator [(Z/ax), (alay)] 
into the daughter c,, C.Y (ac/ar), (at/ax). 

erties and leach rates from the canister surface must 
be specified. It is assumed here that the parent and 
daughter nuclides being close to each other in the 
periodic table will have similar transport properties. 
Further the leach rates are assumed to be either ident- 
ical or that for the daughter is taken to be zero. 

FORMULATION 

Convective heat and mass transfer is governed by 
an equation of the form (Kays and Crawford [5]), 

c,+u* Vc = DV’c-it-t R,l,c, (1) 

c represents temperature in heat transfer problems 
and concentration of a nuclide in mass transfer prob- 
lems. Equation (1) must be solved subject to a cold 
or a clean initial state, t = 0, c = 0 and prescribed flux 
on the canister surface, -(&/an) = q. c is taken to be 
zero in the flow approaching the canisters. The flow 
configuration is shown in Fig. I. Here n is an outward 
drawn normal on the canister surface and q is the heat 
flux in heat transfer and leach rate in mass transfer 
problems. q is taken to be a prescribed constant in 
the present work. In equation (I) D is a dispersion 
coefficient, 1 is the decay constant, 1, is the decay 
constant of the parent nuclide, R, is the fraction of 
the parent nuclide converted into the nuclide under 
study and cp is the parent concentration. In general cp 
must be determined from another equation similar to 
equation (I). A variety of special cases arise from the 
general mass transfer problem represented by equa- 
tion I. These are discussed below. 

Non-dimensionalization. Using a velocity U that pre- 
vails in the undisturbed part of the flow domain as a 
velocity scale and the canister radius R as the length 
scale the convective mass transfer problem is written 
in dimensionless form as follows : 

c,+u.Vc = $‘2c-bc+R,b,cp (2) 

with the initial and boundary conditions, c(t = 0) = 0, 
-(&/&)(r = I) = 1 and C(T = co) = 0. 

In equation (2) r is a radial coordinate measured 
from the centre of the canister. c is scaled by qR, b is 
LRIU and Pe, the Peclet number is UR/D. The charac- 
teristic time scale is R/U. For the special case of 
U = 0 the diffusion limit, the velocity scale is chosen 
as D/R and so the scales for 1 and t are D/R2 and 
R2/D respectively. 

The diffusion limit for a single nuclide (i.e. R, = 0) 
is reached in equation (3) by setting u = 0, using D/R 
as the velocity scale and R 2/D as the time scale. This 
yields 

c, = V2c-bc (3) 

with initial and boundary conditions as in equation 
(2). Here b is defined as LR’/D and 

The equations governing unsteady transport of a 
parent and a daughter nuclide, to be called A and B 
respectively and undergoing a reaction A -+ B are as 
follows : 

A 
1 

c,+u*Vc = EV’c-b,c 

B 
I 

- c,+u*Vc = peV2c-b,c+b,c,. (4) 

Equations (4) are obtained from equation (2) by set- 
ting R, = 0 and 1, respectively. 

The following boundary conditions have been con- 
sidered in the present study. 

Equal leach rates of A and B : 

ac, acB --= 
ar 

--= 1 
ar ’ 
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FIG. I. Canister layout and coordinate system. 

Unequal leach rates of A and B : 

ah --= ar 1, +o. 
The second boundary condition models the problem 
where the daughter nuclide is entirely produced by 
decay of the parent in the flow. In equation (4) the 
Peclet number is defined as Pe = UR/D, where D, the 
dispersion coefficient, is assumed to be identical for A 
and B. 

Equation (2) also represents mass transfer with 
adsorption if the adsorption reaction can be rep- 
resented as a linear isotherm (Bear [6]). In this case 
the characteristic scale for time is /7R/CJ and the decay 
parameter b is /?R/U. p > 1 is the retardation factor 
of the nuclide under study. 

Heat transfer. Setting 1 = 0 and replacing c by T 
gives us the equation governing heat transfer namely, 

T,+u-VT= ;V2T 

with 

T(t = 0) = 0, 
ar 

-%(r=l)=l 

and 

T(r = w) = 0. (5) 

At steady state T, is set equal to zero in equation (5). 
At the diffusion limit II = 0 and using appropriate 
scales equation (4) reduces to, 

T, = V2T (6) 

1=0 
. 

with initial boundary conditions as given in equation 
(5). 

It is worth noting that equations (l)-(5) admit a 
steady state solution but none exists for equation (6). 
This can be traced to the fact that competing mech- 
anisms of production, decay and transport of mass or 
energy exist in the former but not at the pure diffusion 
limit. In a pure diffusion problem the surface tem- 
perature of the canister increases without limit with 
time. In practice increasing temperature beyond a 
certain limit will lead to buoyancy-driven convection 
around the canister and force a steady state to be 
attained. 

The multicanister problem is treated by solving 
equations (l)-(6) with the boundary condition 
-c, = 1 applied on each canister surface. At the 
diffusion limit the governing equations are linear and 
the concentration at a point is obtained by linear 
superposing the individual effects of canisters around 
it. In the presence of flow the velocity vector u is 
altered because of obstructions in the flow path and 
u changes with number and pattern of distribution of 
the canisters. Hence the method of superposition is 
not applicable here. 

Determination of the velocity field 
Flow in a saturated, homogeneous, isotropic 

porous medium is assumed to be governed by Darcy’s 
law, 

K 

II= -Pp3 

the incompressibility constraint V *u = 0 and the 
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boundary condition u * n = 0 on impermeable 
surfaces. For flow past a single cylinder these equa- 
tions can be solved using potential theory. This yields, 

u-iv=l-f where z=x+iy, i=,/(-1) 

and u and u are Cartesian components of velocity. For 
flow past an array of cylinders the permeability K 
appearing in Darcy’s law is made a spatial variable 
with a value of unity in the porous region and a small 
value, around lo-’ over the area occupied by the 
cylinder. The velocity problem is then solved numeri- 
cally in terms of a stream function Y which is related 
to velocity as u = (Y,,, -Y,). The equation governing 
Y can be shown to be, 

V.$VY = 0 (7) 

with the approach flow condition (Y,,, -Y,) = (1,O) 
i.e. Y = y ahead of the cylinder array. 

In the present study calculations have been carried 
out on a square domain in which a single cylinder or 
any array of cylinders is present. This is shown in 
Fig. 1. With reference to this figure the boundary 
conditions for equation (7) are, 

x=0 Y=y;y=O Y=O;y=L Y=L 

and x= L Y’, =O. 

The size of the region L in relation to the cylinder 
radius has been chosen to be 12 units in the present 
work. Equation (7) has been solved by a control vol- 
ume finite difference method with harmonic averaging 
for K at the interface between the cylinder and the 
porous region. A grid size of 201 x 201 has been found 
to be adequate to obtain grid-independent velocity 
profiles. The agreement between the velocity fields 
computed analytically and from equation (7) for a 
single cylinder is found to be excellent. 

Finite element solution. Steady and unsteady con- 
vective heat and mass transfer from single canisters 
and canister arrays have been studied in this work 
using a Galerkin finite element method (Baker [A). 
Six-noded isoparametric triangular elements have 
been used for interpolation of the temperature and 
concentration fields. Implicit finite differencing is used 
to march in time. Matrix inversion is accomplished 
using a sparse matrix solver (Duff [S]). The grid that 
is used discretizes each canister surface with 16 nodes. 
Grid smoothness is guaranteed by the use of a Laplace 
equation for grid generation. Equation (2) is known 
to become computationally intractable for large 
values of the convection parameter Pe. In the present 
work the grid used is found to be adequate for values 
of Pe up to 50. Higher values of Pe lead to oscillations 
in the temperature and concentration fields that can 
be resolved only by grid refinement. In the nuclear 
waste disposal problem studied here values of Pe 
greater than 50 are not expected both because the 
velocity U is small and the dispersion coefficient D is 

large. For typical values of U = 10 m yr- ‘, R = 1 m 
and D = 10 m2 yr- ’ Pe is unity. The testing of the 
finite element code for solving convective heat 
transfer problems is described in the author’s work 
reported elsewhere (Murahdhar [9]). Further com- 
parison with a boundary-layer solution for flow past 
a single cylinder is reported later in this study. 

Finite element calculations have been carried out 
on a domain of size of 12 x 12 units and a canister 
radius of unity. The coordinate system used and the 
boundary conditions on various sides of the flow 
domain are shown in Fig. 1. In unsteady problems a 
variable time step is used. The time steps used in the 
present study are At = 0.01 for t < 0.1 and At = 0.1 
fort > 0.1. 

Boundary-layer solution. Steady flow past a single 
cylinder at high Peclet numbers (Pe > 1) will lead to 
the formation of a boundary-layer on its surface. This 
is shown in Fig. I. All changes in c and Tare confined 
to the region 1 < r < 1+6 and each is zero outside 
this region. The boundary-layer thickness grows on 
the cylinder surface and is a function of 19. If the 
boundary-layer is thin i.e. 6/R << 1, where 6 is the 
thermal or concentration boundary-layer thickness, 
the governing equation for c or T can be simplified. 
If 6/R << 1 the derivatives parallel to the cylinder wall 
are small in comparison to those normal to it, i.e. 
a/a0 << a/& and a2/a8* K a2/ar2 and equation (2) 
reduces to, 

1 
(uc)~ = -(rc,),-rbc+rb,R,c, 

Pe 63) 

where r and 0 are polar coordinates measured from 
the centre of the cylinder and u is now the tangential 
component of velocity. From potential theory the tan- 
gential component of velocity on the canister surface 
is, u = -2 sin 0 for flow past a single cylinder buried 
in a porous medium. Equation (8) is solved by first 
assuming a profile for c in terms of r with 6 as a 
parameter. 6 is then determined from an integrated 
form of equation (8). 

The form for c assumed in the present work is, 

It satisfies the boundary conditions r = 1, -c, = 1 
and r = 1 +6, c = 0 automatically. The value of c at 
the canister surface is S/2. The equation governing S 
is obtained by integrating equation (8) as j i +’ dr. For 
a single nuclide problem (R, = 0) this results in the 
following first order ordinary differential equation. 

d4 a+ {( cot9-icosecB 4--~cosec&#J’ 
> 

= -e?$ (9) 

Here 4 = h2. The initial condition for 4 is obtained 
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from equation (9) by setting d4/dB = 0 as 6 + rc. 
Hence, 

4(n) is obtained as the algebraic root of equation 
(9a), by a Newton-Raphson scheme. Equation (9) is 
integrated by a fourth order Runge-Kutta scheme. 
The heat transfer problem is recovered from equations 
(9) and (9a) by setting the decay parameter b = 0. For 
large values of b and Pe equation (9) becomes stiff. In 
the present work the flow domain 0 < 8 < n has been 
covered by 2400 steps and all computations employ 
double precision arithmetic. Equation (9) exhibits 
singularity at 0 = 0 and 6 and c are unbounded at this 
location. This singularity is related to the boundary- 
layer model for heat and mass transfer and is not 
observed in the finite element simulations. In com- 
puting the average temperature and concentration of 
a cylinder using equation (9) the value 6(O) is ignored. 
However the increase in the magnitude d as 6 + 0 
consistently over-predicts the average values of c and 
T with respect to the finite element solution. 

For a pair of elements A and B that react A + B, 
where A is the parent and B is the daughter nuclide 
the boundary-layer equations are given below. 

Parent 

d4rt xi+ cot tJ - $ cosec f? 
> 

4A - + cosec I!? ~$2’ 

Daughter 

Here C#J~ and & are 6: and 6; respectively. b, and be 
are the decay parameters of nuclides A and B respec- 
tively. 

RESULTS 

The temperature and concentration levels pre- 
vailing on the surface of single canisters and those 
placed in an array are presented here. Various factors 
that influence these levels are separately considered. 

Diffusion limit 
For a single canister the concentration field is 

axisymmetric in the absence of a superimposed flow, 
i.e. a/&3 = 0. The solution of equation (3) subject to 
the gradient condition -c,I,=, = 1 can be obtained 
by Fourier transforms. It is given as, 

c(r, t) = m PRo(A 1) 
~UW’+b) 

(1 -e--(fl’+“i’)d/I (12) 

where 

and 

N(B) = J:(B) + y:(P). 

J and Y are Bessel functions of the first and second 
kind and their order is represented by their subscript. 
The integral given above converges as t + co only if 
b > 0. Hence a steady state solution for c does not 
exist for the heat transfer problem. The value of c( 1, t) 
has been numerically evaluated in the present work 
using Simpson’s rule. A value of p = 100 for the upper 
limit of integration and 8001 points for Simpson’s 
rule to produce converged results for c. Such a large 
number of integration points is required in particular 
for small values of b and large time. 

The variation of the wall concentration c( 1, I) with 
time and with b as a parameter is shown in Fig. 2. It 
is seen that c increases without limit when b = 0 but 
a steady state is attained for finite values of b. Steady 
state is attained faster at higher values of b. Under 
these conditions the amount of c produced at the 
surface of the canister is annihilated by decay of the 
nuclide in the region surrounding the canister. For 
a canister radius R = 1 m, D = 1.0 m’ yr- ’ and a 
half-life of 100 yr b = R ‘1/D can be calculated as 
0.69 x 1 O- 2. For long-lived isotopes b is much smaller 
and the solution for b = 0 must be used. 

Diffusive heat and mass transfer from a canister 
placed in a symmetric array with a spacing ‘d’ (Fig. 
1) is considered next. The concentration on the central 
canister can be expected to be larger than the values 
of c on the remaining four canisters since the latter 
are exposed to an unbounded region on a portion of 
their surface. The value of ~(1, t) on the central can- 
ister is obtained by computing the effect of each can- 
ister individually using equation (12) and summing 
up these values. For an array the concentration dis- 
tribution is no longer axisymmetric. However direct 
calculations of c on the central canister show c to be 
only a weak function of 6 with the maximum and 
minimum values being within 2% of each other. The 
values given below are the maximum values ofc( 1, t) 
on the central canister. For the array pattern con- 
sidered in Fig. 1 these occur at 6 = 0, n/4 and n/2 in 
each quadrant. 

Figure 3 shows the effect of the canister spacing d 
on the transient growth of c( 1, t) on the central canis- 
ter. The effect of the neighbouring canisters is seen to 
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FIG. 2. Increase in wall concentration with time : diffusion limit. 
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FIG. 3. Increase in wall concentration of the central canister in an array: diffusion limit. 

be most pronounced at large time, small d and small 
values of b. Under these conditions the region around 
the canister that is affected by heat and mass transfer 
at its surface is large resulting in interference effects 
between canisters. 

Flow past canisters : Steady state 
Steady heat and mass transfer from canisters placed 

in a prescribed flow field is considered next. Steady 
state results for the dimensionless average heat flux 
from canister whose surface is at a constant tem- 
perature have been presented by Kimura [4] using a 
finite difference method. The results obtained in the 
present study using the finite element and the boun- 
dary-layer methods are compared with the published 
data in Table 1. The profile assumed in the boundary- 
layer method is, T = (1 - (r- 1 IS)) *. 

The comparison among the three solutions in Table 
1 is seen to be good for the range 1 G Pe < 25. It is 
to be noted that the boundary-layer approximations 
are not valid for Pe < 1, in transient and in array- 
interaction problems. The finite element solution is 
the only option available in such cases. Secondly the 

singularity of the boundary-layer equations as tI -P 0 
consistently predicts a higher heat transfer rate in 
Table 1 and a lower wall temperature and con- 
centration in prescribed gradient problems. 

Single canister. Heat and mass transfer from single 
canisters on the surface of which a prescribed heat 
flux or a leach rate for a single nuclide prevails is 
described below. See Table 2 for initial values of 4(n) 
for BLM and Table 3 for average concentration levels. 

Numerical results show that the average concen- 
tration level given in Table 3 is nearly equal to the 
local maximum value on the canister surface for 
Pe < 1. For Pe = 10 the maximum value is larger 
by a factor of two. 

Table 1. Average wall heat flux from an isothermal canister 
placed in flow 

Pe 0.1 1 2.5 5 10 25 50 100 

FEM 0.143 0.74 1.126 1.564 2.22 3.39 3.41 - 
BLM 0.232 0.734 1.115 1.64 2.32 3.66 5.19 7.34 
Kimura [4] 0.221 0.697 1.103 1.56 2.20 3.48 4.93 6.97 
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Table 2. Initial values of 4 at 0 = II Table 4. Average wall concentration on the central canister 
of an array 

Pe 
PI? 

b 1 IO 100 

0.1 2.8013 0.2839 0.02851 
I 1.7989 0.1929 0.01977 

10 0.4393 0.0478 0.00493 

Canister array. We study below an array of five 
canisters using the finite element method. Average 
concentrations at steady state on the central canister 
are presented in Table 4. Two different values of the 
separation parameter, d = 6 and 8, have been con- 
sidered in the present study. 

d b 0. I I.0 10.0 

6 0 4.05 2.18 0.45 
0.1 3.81 1.71 0.42 
I.0 2.51 0.77 0.22 

10.0 0.79 0.24 0.044 
8 0 2.83 1.75 0.46 

0.1 2.67 1.43 0.42 
I.0 1.84 0.71 0.23 

10.0 0.12 0.24 0.047 

The following observations can be made from Table 
4. The results for 6 = 0 and b = 0.1 are quite close to 
each other and effects of decay are seen only for 
b > 0.1. This is consistent with the result obtained for 
a single canister (Table 3). Interaction effects lead to 
an increase in the average wall concentration. This 
is significant at low Peclet number (Pe < 1) and is 
virtuaIly absent for Pe >, 10. The presence of several 
canisters increases the local velocity in the gaps 
between them and can result in a slight lowering of 
the wall concentration. For spacing d = 6 and 8 this 
lowering is not significant even at Pe = 10. 

Flow past canisters: Transient evoIution 
For a prescribed gradient condition on a canister 

surface the wall concentration reaches a maximum at 
steady state. The maximum value depends on the flow 
parameter Pe and the decay parameter b. It is impor- 
tant to know the time scale involved in reaching steady 
state. The porous formation is assumed to be initially 
cold in the temperature problem (T(x, 0) = 0) and 
clean in the concentration problem (c(x, 0) = 0). The 
flow itself is assumed to be steady in the present dis- 
cussion. Figure 4 shows the increase in the average 
concentration on the surface of an isolated canister 
with time for different values of Pe and b. The result 
for b = 0 is close to that for b = 0.1 and is not shown. 
Figure 5 shows a similar plot for the central canister 

of an array that is shown in Fig. 1. The result for 
Pe = 10 is not plotted in Fig. 5 since it is identical to 
that shown in Fig. 4. The general trend seen in Figs. 
4 and 5 is as follows. Steady state is attained faster at 
higher values of b. The short time solution for t ,< 0.01 
is, however, nearly independent of b and depends only 
on the Peclet number. For both a single canister and 
an array steady state is reached for small values of b 
(b < 0.1) in a dimensionless time of 3 units inde- 
pendent of Pe. Since the time scale is U/R the dimen- 
sional time required to reach steady state is 3R/U. 
This quantity decreases with increasing U and hence 
increasing values of Pe. For R = 1 m and U = 10 m 
yr- ’ the time required to reach steady state is 30 yr. 
Safety analysis is usually carried out over a much 
longer time period and transients may be unimportant 
in such a study. 

Table 3. Average wall temperature/concentration on a can- 
ister with a prescribed heat flux 

Pe 

b 0.1 1.0 10.0 100.0 

0 FEM 1.89 1.236 0.421 - 
BLM - 1.59 0.503 0.159 

0.1 FEM 1.8174 1.1033 0.3905 - 
BLM - I.447 0.47 0.15 

1.0 FEM 1.42 0.68 0.228 - 
BLM - 0.92 0.32 0.104 

10.0 FEM 0.707 0.248 0.049 - 
BLM - 0.36 0.12 0.038 

The reduction in the real time required to reach 
steady state with increasing b and Pecan be explained 
as follows. The steady state represents an equilibrium 
among the mechanisms of diffusion, advection and 
decay of a nuclide. At small time the extent of the 
affected region around a canister represented by the 
boundary-layer thickness 6 is small. Since diffusion 
occurs across a concentration gradient a small 6 leads 
to a large diffusive transport into the flow domain. 
Radioactive decay is distributed over the volume of 
the affected region and is small when 6 is small. Hence 
at small time we have diffusion > convection + decay. 
As a consequence 6 increases with time till diffusion 
effects reduce in magnitude and the amount of decay 
becomes significant. At steady state the left and right 
hand sides of the inequality given above are strictly 
equal. Clearly the equality is attained rapidly if Pe 
(convection) orb (decay) is increased. In a conduction 
heat transfer problem Pe and b are zero and no steady 
state is possible. 

Parent-daughter model 
Equation (4) describes transport of a pair of 

nuclides A and B which follow the reaction A + B. 
Here A is identified as a parent and B as a daughter. 
On decay A is completely converted to B and so the 
factor R, in equation (2) is unity. In the waste disposal 
application B is usually more stable than A with a half 



2672 K. MURALIDHAR 

I  

b Pe 
I 0.1 0.1 
2 IO 01 

5 0.1 IO 
6 IO IO 

c I- 

FIG. 4. Increase in wall concentration with time: effect of flow. 

life at least two orders of magnitude larger than that 
of A. Hence the decay parameter b for the daughter 
nuclide is small and is set to zero in the present 
problem. The decay parameter in the discussion below 
refers to the parent alone. The following cases have 
been considered : 

1. Diffusion limit. 
2. Convective transport due to fluid flow. 

At the diffusion limit the concentration level of a 
stable daughter is governed by the equation, 

I 
c, = c,,+ -c,+bc,(r,t) 

r 

with the condition, c(f = 0) = 0, -c,(r = 1) = L, and 
c(r = co) = 0. Here L, is the leach rate of nuclide B 
and is 0 or 1; 6 is the decay parameter of the parent 
A. The analytical solution of this equation is, 

c = L,c, +6cg 

where cA = c(r, t ; b = 0), the concentration level of 
nuclide A with b set to zero (equation (12)) and 

c,(r, 0 = 1‘ 
m dBP&(P. r)MB, 1)W. 0 
cl (b+P*)*Nm 

where 

F(P, t) = b(1 -e-p+) -/3’ e-8*‘(1 -eeb’). 

Since cA increases monotonically with time the 
daughter concentration is also an unbounded function 
of time unless L, is zero. When L, is zero the nuclide 
B is produced in the porous region only by the decay 
of A and a steady state is possible. Figure 6 shows a 
plot of cg as a function of time. 

Parent and daughter concentrations on the canister 
in the presence of flow are considered next. When 
equal fluxes of A and B prevail on the canister surface 
the steady state concentration of B exceeds that of A 
owing to the decay reaction A + B. The initial value 
r&,(g) required for integrating the boundary-layer 
equations is given in Table 5. 

Values of the average concentration of nuclide B as 
a function of Pe and b, the decay parameter of nuclide 
A are given in Table 6. As before the FEM solution 

C 

b Pe 
I 1.0 0.1 

2 IO 0.1 
3 1.0 1.0 
4 IO 1.0 

2- 

FIG. 5. Increase in wail concentration on the central canister of an array with time : effect of flow. 



Heat and mass transfer from buried nuclear waste canisters 

0.5 

0.4 - 

I I 
__------a 

----Steady state 

FIG. 6. Increase in function cg with time in parentdaughter problem. 

Table 5. Initial values of & at 0 = x ; boundary-layer solu- 
tion 

Pe 

b I 10 100 

0.1 3.1986 0.3161 0.03 148 
1 4.201 0.4071 0.0402 

10 5.5606 0.5521 0.0551 

at Pe = 100 and the BLM solution at Pe = 0.1 are not 
given here. 

The average concentration of the parent nuclide is 
given in Table 3. The daughter concentration at steady 
state is always larger than that of the parent. Besides, 
the following observations can be made. The average 
daughter concentration drops with increasing Peclet 
number as in the case of the parent. However, increas- 
ing values of b reduce the parent concentration but 
increase that of the daughter. The extent of this 
increase depends on the relative importance of 
diffusion and convection and hence the Peclet number. 
It is small at higher values of Pe. The daughter con- 

Table 6. Average concentration of the daughter nuclide 

Pe 

6 0.1 1 10 100 

FEM 
0.1 

3.58 1.38 0.46 - 
BLM - 1.746 0.541 0.169 
FEM 

1 
4.65 1.805 0.625 - 

BLM - 2.052 0.638 0.20 
FEM - 
BLM ‘0 

5.45 2.24 0.80 
- 2.242 0.71 0.224 

centration is a stronger function of Pe than of b. For 
example as Pe changes from I to 10 the concentration 
drops by about a factor of three. When b changes 
from 1 to IO the concentration increases by about 
30%. 

Results are given in Table 7 for the average 
daughter concentration when the prescribed fluxes of 
A and B on the canister surface are 1 and 0 respec- 
tively. Here the daughter nuclide is produced entirely 
by the decay of the parent. The former is assumed to 
be stable. The boundary-layer method with a quad- 
ratic profile is inapplicable here because it predicts a 
finite non-zero gradient at the wall. Calculations for 
this problem have been carried out using the finite 
element method. 

Since nuclide B is produced entirely by the decay of 
A the daughter concentration at steady state is a 
strong function of the decay parameter b. It continues 
to depend strongly on Pe as well. 

In comparison to the single nuclide problem the 
transients here are of a long duration and steady state 
is attained in about ten dimensionless units. Increasing 
b reduces the transient period for the parent nuchde 
but increases that of the daughter. When the latter is 
produced entirely due to the decay of the parent there 
is further delay in the build-up of the daughter con- 
centration. 

Table 7. Average daughter concentration on canister surface 

Pe 

b 0.1 1 10 

0.1 0.502 0.14 0.036 
1 1.58 0.56 0.20 

10 2.37 0.99 0.38 
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CONCLUSIONS 

The following conclusions have been drawn in the 
present study. 2. 

The average concentration level of a nuclide on the 
surface of a canister decreases with increasing Peclet 
number Pe and the decay parameter 6. 

The average concentration reaches a maximum at 
steady state. When Pe = b = 0 no steady state exists 3. 
and the maximum value is unbounded. 

The real time required to reach steady state 4. 
decreases with increasing values of Pe and 6. 

Canister interaction effects are important at steady 
state, small values of 6 (< 1) and small values of Pe 5 
(<I). 

For Pe > 1 the boundary-level method is a rapid 
6. 

way of determining concentration levels on single 7. 
canisters at steady state. 

8. 
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